Mammograms Enhancement and Denoising Using Generalized Gaussian Mixture Model in Nonsubsampled Contourlet Transform

نویسندگان

  • Xinsheng Zhang
  • Hua Xie
چکیده

In this paper, a novel algorithm for mammographic images enhancement and denoising based on Multiscale Geometric Analysis (MGA) is proposed. Firstly mammograms are decomposed into different scales and directional subbands using Nonsubsampled Contourlet Transform (NSCT). After modeling the coefficients of each directional subbands using Generalized Gaussian Mixture Model (GGMM) according to the statistical property, they are categorized into strong edges, weak edges and noise by Bayesian classifier. To enhance the suspicious lesion and suppress the noise, a nonlinear mapping function is designed to adjust the coefficients adaptively so as to obtain a good enhancement result with significant features. Finally, the resulted mammographic images are obtained by reconstructing with the modified coefficients using NSCT. Experimental results illustrate that the proposed approach is practicable and robustness, which outperforms the spatial filters and other methods based on wavelets in terms of mass and microcalcification denoising and enhancement.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Robust Image Denoising Technique in the Contourlet Transform Domain

The contourlet transform has the benefit of efficiently capturing the oriented geometrical structures of images. In this paper, by incorporating the ideas of Stein’s Unbiased Risk Estimator (SURE) approach in Nonsubsampled Contourlet Transform (NSCT) domain, a new image denoising technique is devised. We utilize the characteristics of NSCT coefficients in high and low subbands and apply SURE sh...

متن کامل

Denoising Method Based on the Nonsubsampled Shearlet Transform

In this paper, a new bivariate shrinkage denoising method is proposed to model statistics of shearlet coefficients of images. Using Bayesian estimation theory we derive from this model a simple non-linear shrinkage function for shearlet denoising, which generalizes the soft threshold approach. Experimental results show that the proposed method can remove Gaussian white noise while effectively p...

متن کامل

An Efficient Way to Enhance Mammogram Image in Transformation Domain

Breast cancer is one of the most important causes of increased women death rate in the world. Mammography is the most efficient approach for the early identification of breast diseases. The major objective of mammography is to identify small, non-palpable cancers during its premature stage. On the other hand, mammograms are extremely complicated to interpret being the fact that the pathological...

متن کامل

ImageDenoising UsingContour let Transform with Application to Synthetic Aperture Radar

In all methods of image denoising there is a problem always exists that is how to distinguish noise and edge. Now wavelet and contourlet are main tools in image denoising, but threshold is the key in wavelet and contourlet denoising. In order to distinguish noise and edge well, most methods in wavelet denoising are about the improvement of threshold. Aiming to resolve this problem, a new method...

متن کامل

Performance Analysis of Modified Nonsubsampled Contourlet Transform for Image Denoising

In this study, we develop modified Nonsubsampled Contourlet Transform (NSCT). The construction of NSCT is based on new nonsubsampled pyramid structure and Nonsubsampled Directional Filters (NSDF). The result is improved in flexible multiage, multidirectional and shift invariant image decomposition that can be effectively implemented through Matlab. The modified NSCT, it proposed to distinguish ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Multimedia

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2009